Publicações de 2011 a 2015

 

2015 (29)| 2014 (18) |2013 (24) | 2012 (19) | 2011 (17)

 

 

 

2015

 

  1. BRITO, MAHEUS; CHARI, V.; MOURA, A.. DEMAZURE MODULES OF LEVEL TWO AND PRIME REPRESENTATIONS OF QUANTUM AFFINE. Journal of the Institute of Mathematics of Jussieu (Print), 2015.
  2. Brahic, Olivier; Fernandes, R.L., Integration of coupling Dirac structures, Pacific Journal of Mathematics 278-2 (2015), 325–367.
  3. Bergamasco, A. P.; Kirilov, Alexandre; Zani, S. L.; Nunes, W. V. L.. Global solutions to involutive systems. Proceedings of the American Mathematical Society, v. 143, p. 4851-4862, 2015.
  4. Bergamasco, A. P.; da Silva, P. L. D.; Gonzalez, R. B.; Kirilov, Alexandre. Global solvability and global hypoellipticity for a class of complex vector fields on the 3-torus. Journal of Pseudo-Differential Operators and Applications, v. 6, p. 341-360, 2015.
  5. Ceccon, Jurandir; Cioletti, L. Equivalence of optimal L^1-inequalities on Riemannian manifolds. Journal of Mathematical Analysis and Applications (Print), v. 423, p. 10-17, 2015.
  6. Ceccon, Jurandir; Montenegro, Marcos. Sharp Lp-entropy inequalities on manifolds. Journal of Functional Analysis, v. 269, p. 1591-1619, 2015.
  7. Abreu, Emerson; Ceccon, Jurandir; Montenegro, Marcos. Extremals for sharp GNS inequalities on compact manifolds. Annali di Matematica Pura ed Applicata, v. 194, p. 1393-1421, 2015.
  8. Ferreira, J.A.; Grassi, M.; Gudiño, E.; De Oliveira, P. A new look to non-Fickian diffusion. Applied Mathematical Modelling, v. 39, p. 194-204, 2015.
  9. Bekkert, V.; Coelho, F. U.; Wagner, Heily..Tree Oriented Pullback. Communications in Algebra, v. 43, p. 4247-4257, 2015.
  10. Duran, Carlos Eduardo; Sperança, Llohann. Rigidity of flat sections on non-negatively curved pullback submersions. Manuscripta Mathematica, v. 147, p. 511-525, 2015.
  11. Trovon, Alexandre. ; Suzuki, Osamu. Noncommutative Galois Extensions and Ternary Clifford Analysis. Advances in Applied Clifford Algebras, v. 26, p. s00006-015-0565, 2015.
  12. Pericaro, G. A.; Santos, S. R.; Ribeiro, Ademir; Matioli, Luiz Carlos HLRF-BFGS optimization algorithm for structural reliability. Applied Mathematical Modelling, v. 39, p. 2025-2035, 2015.
  13. Pettres, R.; De Lacerda, L. A.; Carrer, José. A boundary element formulation for the heat equation with dissipative and heat generation terms. Engineering Analysis with Boundary Elements, v. 51, p. 191-198, 2015.
  14. Muniz Silva Alves, Marcelo, Batista, E. ; J. Vercruysse. Partial representations of Hopf algebras. Journal of Algebra (Print), v. 426, p. 137-187, 2015.
  15. Wang, L.; Sun, W.; de Sampaio, R. J. B.; Yuan, Jinyun A Barzilai and Borwein scaling conjugate gradient method for unconstrained optimization problems. Applied Mathematics and Computation, v. 262, p. 136-144, 2015.
  16. Zhang, T.; Yuan, Jinyun. A stabilized characteristic finite element method for the viscoelastic oldroyd fluid motion problem. International Journal of Numerical Analysis and Modeling, v. 12, p. 617-635, 2015.
  17. Liu, X.; Wu, Y.; Yuan, Jinyun; Sampaio, R.; Wang, Y. Sixth-order Compact Extended Trapezoidal Rules for 2D Schrödinger Equation. Journal of Mathematical Study, v. 48, p. 30-52, 2015.
  18. Grapiglia, Geovani; Yuan, Jinyun; YUAN, Y.; On the convergence and worst-case complexity of trust-region and regularization methods for unconstrained optimization. Mathematical Programming, v. 152, p. 491-520, 2015.
  19. PERICARO, G. A.; SANTOS, S. R.; RIBEIRO, A. A.; MATIOLI, L. C.. HLRF-BFGS optimization algorithm for structural reliability. Applied Mathematical Modelling, v. 39, p. 2025-2035, 2015.
  20. Conejo, P. D.; Karas, Elizabeth W.; Pedroso, L. G.. A trust-region derivative-free algorithm for constrained optimization. Optimization Methods & Software (Print), v. 30, p. 1126-1145, 2015.
  21. FERREIRA, PRISCILA S.; Karas, Elizabeth W.; SACHINE, MAEL. A globally convergent trust-region algorithm for unconstrained derivative-free optimization. Matemática Aplicada e Computacional (Cessou em 1997. Cont. ISSN 1807-0302 Computational & Applied Mathematics), v. 34, p. 1075-1103, 2015.
  22. SEBOLD, J. E.; LACERDA, L. A.; CARRER, J. A. M.. An Error Estimator for the Finite Element Approximation of Plane and Cylindrical AcousticWaves. Computer Modeling in Engineering & Sciences (Print), v. 106, p. 127-145, 2015.
  23. Hu, L.. The square of Dirac operator on homogeneous spaces. International Journal of Pure and Applied Mathematics, v. 104, p. 145-149, 2015.
  24. Hu, L.. From the square of Dirac operator to the spin Landau Hamiltonian on homogeneous special orthogonal spaces. International Journal of Pure and Applied Mathematics, v. 104, p. 151-157, 2015.
  25. GOSWAMI, DEEPJYOTI; DAMÁZIO, PEDRO D.. A Two-Grid Finite Element Method for Time-Dependent Incompressible Navier-Stokes Equations with Non-Smooth Initial Data. Numerical Mathematics, v. 8, p. 549-581, 2015.
  26. OLIVEIRA, S. P.; Azevedo, Juarez S.. Numerical approximation of 2D Fredholm integral eigenvalue problems by orthogonal wavelets. Applied Mathematics and Computation, v. 267, p. 517-528, 2015.
  27. BRUFATI, T. E. B.; OLIVEIRA, S. P.; BASSREI, A.. Conjugate Gradient Method for the Solution of Inverse Problems: Application in Linear Seismic Tomography. TEMA. Tendências em Matemática Aplicada e Computacional, v. 16, p. 185-194, 2015.
  28. AZEVEDO, J. S.; OLIVEIRA, S. P.; WISNIEWSKI, F.. WEIGHTED GAUSSIAN QUADRATURES FOR ORTHOGONAL WAVELET FUNCTIONS IN THE INTERVAL. International Journal of Applied Mathematics, v. 28, p. 757-778, 2015.
  29. C.A.ROIKA,; KUDRI, S. R. T.; BREUKMANN, Tomas. On Locally Hurewicz Spaces. European Journal of Pure and Applied Mathematics, v. 8, p. 514-525, 2015.

 

2014

 

  1. Ribeiro-Junior, Roberto; Nachbin, André. A boundary integral formulation for particle trajectories in Stokes waves. Discrete and Continuous Dynamical Systems, v. 34, p. 3135-3153, 2014.
  2. Dias, Nelson Luis; Chor, Tomas; Ruiz de Zarate, Ailin A semi-analytical solution for the Boussinesq equation with non-homogeneous constant boundary conditions. Water Resources Research, v. 50, p. 6549-6556, 2014.
  3. Ferreira, J. A.; Grassi, M.; Gudin'O, E.; De Oliveira, Paula. A 3D Model for Mechanistic Control of Drug Release. SIAM Journal on Applied Mathematics (Print), v. 74, p. 620-633, 2014.
  4. Assem, Ibrahim; Coelho, Flávio U.; Wagner, Heily. On subcategories closed under predecessors and the representation dimension. Journal of Algebra, v. 418, p. 174-196, 2014.
  5. Karas, Elizabeth W.; Santos, S.; Svaiter, B. F.. Algebraic rules for quadratic regularization of Newton s method. Computational Optimization and Applications, v. 58, p. 1-34, 2014.
  6. Zhang, Tong; Yuan, Jinyun. Two novel decoupling algorithms for the steady Stokes-Darcy model based on two-grid discretizations. Discrete and Continuous Dynamical Systems. Series B, v. 19, p. 849-865, 2014.
  7. Carvalho, Esdras P.; Borges, Carolina; Andrade, Doherty; Yuan, Jinyun; Ravagnana, Mauro A.S.S.. Modeling and optimization of an ammonia reactor using a penalty-like method. Applied Mathematics and Computation, v. 237, p. 330-339, 2014.
  8. Alfaro Vigo, Daniel G.; Oliveira, Saulo P.; Ruiz de Zárate, Ailín; Nachbin, André. Fully discrete stability and dispersion analysis for a linear dispersive internal wave model. Computational & Applied Mathematics, v. 33, p. 203-221, 2014.
  9. Oliveira, Saulo P. ; Azevedo, Juarez S. . Spectral element approximation of Fredholm integral eigenvalue problems. Journal of Computational and Applied Mathematics, v. 257, p. 46-56, 2014.
  10. Fu, M. T.; Rivera, J. E. M. ; Oquendo, H. P. ; Sobrado Suarez, F. M.. Polynomial stabilization of magnetoelastic plates. IMA Journal of Applied Mathematics, v. 79(2), p. 241-253, 2014.
  11. Oishi, Cassio M.; Yuan, Jin Y.; Cuminato, Jose A.; Stewart, David E.. Stability analysis of Crank-Nicolson and Euler schemes for time-dependent diffusion equations. BIT Numerical Mathematics, v. 54, p. 1-27, 2014.
  12. Li, Xu; Wu, Yu-Jiang; Yang, Ai-Li; Yuan, Jin Y. A Generalized HSS Iteration Method for Continuous Sylvester Equations. Journal of Applied Mathematics, v. 2014, p. 1-9, 2014.
  13. Jiwari, Ram; Yuan, Jin Y. A computational modeling of two dimensional reaction-diffusion Brusselator system arising in chemical processes. Journal of Mathematical Chemistry, v. 52, p. 1535-1551, 2014.
  14. Li, Xu; Wu, Yu-Jiang; Yang, Ai-Li; Yuan, Jin Y. Modified accelerated parameterized inexact Uzawa method for singular and nonsingular saddle point problems. Applied Mathematics and Computation, v. 244, p. 552-560, 2014.
  15. Brasil; Mariano; Montes, R. R. On Contact Normal Parallel Sacelike Submanifolds in a semi-Riemannian Sasakian spaceform. Matematica Contemporanea, v. 43, p. 89, 2014.
  16. Brahic, Olivier; Fernandes, Rui Loja. Integrability and reduction of Hamiltonian actions on Dirac manifolds. Indagationes Mathematicae (Print), v. 25, p. 901-925, 2014.
  17. Sperança, Llohann D. An identification of the Dirac operator with the parity operator. International Journal of Modern Physics D, v. 23, p. 1444003, 2014.
  18. Gonzaga, C. C.; Karas, Elizabeth W.. COMPLEXITY OF FIRST-ORDER METHODS FOR DIFFERENTIABLE CONVEX OPTIMIZATION. Pesquisa Operacional (Impresso), v. 34, p. 395-419, 2014.

 

 

2013

 

  1. Grapiglia, G. N.; Yuan, J.; Yuan, Ya-Xiang. A Subspace Version of the Powell-Yuan Trust-Region Algorithm for Equality Constrained Optimization. Journal of the Operations Research Society of China, v. 1, p. 425-451, 2013.
  2. Medeira, C.. Global solvability for involutive systems on the torus. Electronic Journal of Differential Equations, v. 244, p. 1-8, 2013.
  3. Pany, Amyia K.; Pany, Ambit K.; Damazio, Pedro; Yuan, Jinyun. A modified nonlinear spectral Galerkin method for the equations of motion arising in the Kelvin-Voigt fluids. Applicable Analysis, v. 93, p. 1-24, 2013.
  4. Alves, Marcelo Muniz S. ; Batista, Eliezer; Dokuchaev, Michael; Paques, Antonio. Twisted partial actions of Hopf algebras. Israel Journal of Mathematics, v. 197, p. 263-308, 2013.
  5. Santos, L.B.; Osuna-Gómez, R.; Hernández-Jiménez, B.; Rojas-Medar, M.A.. Necessary and sufficient second order optimality conditions for multiobjective problems with data. Nonlinear Analysis, v. 85, p. 192-203, 2013.
  6. Chor, Tomás; Dias, Nelson L.;  Ruiz de Zárate, Ailín. An exact series and improved numerical and approximate solutions for the Boussinesq equation. Water Resources Research, v. 49, p. 7380-7387, 2013
  7. Ferreira, José A.; Gudiño, Elias; De Oliveira, Paula. A Second Order Approximation for Quasilinear Non-Fickian Diffusion Models. Computational Methods in Applied Mathematics, v. 13, p. 471-493, 2013.
  8. WANG, LI-PING;Yuan, Jinyun. Conjugate Decomposition and Its Applications. Journal of the Operations Research Society of China, v. 1, p. 199-215, 2013.
  9. BILOTI, R.; MATIOLI, L.C.; Yuan, Jinyun. A short note on a generalization of the Givens transformation. Computers & Mathematics with Applications (1987), v. 66, p. 56-61, 2013.
  10. Conejo, P. D.; Karas, E.W.; Pedroso, L.G.; RIBEIRO, A.A.; Sachine, M. Global convergence of trust-region algorithms for convex constrained minimization without derivatives. Applied Mathematics and Computation, v. 220, p. 324-330, 2013.
  11. HOEFEL, E.; Livernet, Muriel. On the spectral sequence of the Swiss-cheese operad. Algebraic and Geometric Topology (Print), v. 13, p. 2039-2060, 2013.
  12. OLIVEIRA, S. P.; Ruiz de Zarate, A.; ROCHA, A. C.; ALFARO VIGO, D.G.. A note on the alternate trapezoidal quadrature method for Fredholm integral eigenvalue problems. Numerical Algorithms, v. 1, p. 1, 2013.
  13. PERIÇARO, G.A.; RIBEIRO, A.A.; KARAS, E. W. Global convergence of a general filter algorithm based on an efficiency condition of the step. Applied Mathematics and Computation, v. 219, p. 9581-9597, 2013.
  14. Ceccon, J.; MONTENEGRO, M. Optimal Riemannian -Gagliardo Nirenberg inequalities revisited. Journal of Differential Equations (Print), v. 254, p. 2532-2555, 2013.
  15. Alvares, E. R.; Marcelo Muniz S. Alves; Batista, E.. Partial Hopf module categories. Journal of Pure and Applied Algebra (Print), v. 217, p. 1517-1534, 2013
  16. BAJPAI, SAUMYA; NATARAJ, NEELA; PANI, AMIYA K.; Damazio, Pedro; Yuan, Jinyun. Semidiscrete Galerkin method for equations of motion arising in Kelvin-Voigt model of viscoelastic fluid flow. Numerical Methods for Partial Differential Equations (Print), v. 29, p. 857-883, 2013.
  17. ORTIZ, C. Multiplicative Dirac structures, Pacific Journal of Mathematics 266 (2), p. 239-265, 2013
  18. Gonzaga, Clóvis C.; Karas, Elizabeth W. Fine tuning Nesterov's steepest descent algorithm for differentiable convex programming. Mathematical Programming, v. 138, p. 141-166, 2013.
  19. Gonzaga, Clóvis C.; Karas, Elizabeth W. ; Rossetto, Diane. An Optimal Algorithm for Constrained Differentiable Convex Optimization. SIAM Journal on Optimization, v. 23, p. 1939-1955, 2013.
  20. Carrer, J.A.M.; FLEISCHFRESSER, S.A.; GARCIA, L.F.T.; Mansur, W.J.. Dynamic analysis of Timoshenko beams by the boundary element method. Engineering Analysis with Boundary Elements, v. 37, p. 1602-1616, 2013.
  21. PEREIRA, W.L.A.; KARAM, V.J.; CARRER, J. A. M.; MONTEIRO, Cid da Silva Garcia; MANSUR, W. J.; MANSUR, W. J.. Numerical Solutions for Free Vibration Analysis of Thick Square Plates by the BEM. Computer Modeling in Engineering & Sciences (Print), v. 96, p. 117-130, 2013.
  22. HU, L.; ROSSETTO, J.J.. THE LAPLACIAN ON AN AFFINE HOMOGENEOUS SPACE. International Journal of Pure and Applied Mathematics, v. 85, p. 531-539, 2013.
  23. HU, L.; ROSSETTO, J.J.. THE LAPLACIAN ON HOMOGENEOUS SPECIAL ORTHOGONAL SPACES AND THE INVERSE BRANCHING RULE. International Journal of Pure and Applied Mathematics, v. 87, p. 621-628, 2013.
  24. HU, L.; ROSSETTO, J.J.. THE LAPLACIAN ON HOMOGENEOUS SPECIAL UNITARY SPACES AND THE CORRESPONDING INVERSE BRANCHING RULE. International Journal of Pure and Applied Mathematics, v. 89, p. 105-109, 2013.

 

2012

 

  1. Kirilov, Alexandre; Bergamasco, A. P.; Nunes, W. V. L.; Zani, S. L.; On the global solvability for overdetermined systems. Transactions of the American Mathematical Society, v. 364, p. 4533-4549, 2012.
  2. Oliveira, Saulo; Azevedo, J. S.. A Numerical Comparison Between Quasi-Monte Carlo and Sparse Grid Stochastic Collocation Methods. Communications in Computational Physics, v. 12, p. 1051-1069, 2012.
  3. Oliveira, Saulo; Azevedo, Juarez S.; Murad, Márcio A.; Borges, Marcio R. . A space-time multiscale method for computing statistical moments in strongly heterogeneous poroelastic media of evolving scales. International Journal for Numerical Methods in Engineering (Print), v. 90, p. 671-706, 2012.
  4. Matioli, Luiz Carlos; Santos, S.R.; Beck, A.T. New Optimization Algorithms for Structural Reliability Analysis. Computer Modeling in Engineering & Sciences (Print), v. 83, p. 23-55, 2012.
  5. Hoefel, Eduardo. On the coalgebra description of OCHA. Journal of Pure and Applied Algebra, p. 734-741, 2012.
  6. Hoefel, Eduardo; Livernet, Muriel. Open-Closed Homotopy Algebras and Strong Homotopy Leibniz Pairs Through Koszul Operad Theory. Letters in Mathematical Physics, v. 001, p. 001-028, 2012.
  7. Montes, Rodrigo; A Characterization of Minimal Surfaces in the Lorentz Group L^3. International Mathematical Forum, v. 7, p. 993-998, 2012.
  8. Carrer, J. A. M.; Oliveira, M. F.; VANZUIT, R. J.; MANSUR, W. J. Transient heat conduction by the boundary element method: D-BEM approaches. International Journal for Numerical Methods in Engineering (Print), v. 89, p. 897-913, 2012.
  9. Santos, Lucelina; ROJAS-MEDAR, M.A; Oliveira, V.A. Saddle point and second order optimality in nondifferentiable nonlinear abstract multiobjective optimization. TEMA. Tendências em Matemática Aplicada e Computacional, v. 13, p. 179, 2012.
  10. HERNANDEZ-JIMENEZ, B.; OSUNA-GOMEZ, R.; ROJAS-MEDAR, M.;Santos, Lucelina; Generalized convexity for non-regular optimization problems with conic constraints. Journal of Global Optimization (Dordrecht. Online), v. 2012, p. 1, 2012.
  11. Yuan, Jin Yun; Zontini D. Comparison theorems of preconditioned Gauss Seidel methods for M-matrices. Applied Mathematics and Computation, v. 219, p. 1947-1957, 2012.
  12. CIFUENTES, J. C. O Princípio Finitista Arquimediano e os Fundamentos da Aritmética: uma introdução à teoria dos aritmos. CLE e-Prints (Online), v. 12(1), p. 1-16, 2012.
  13. CIFUENTES, J. C.; NEGRELLI, L. G.. Uma Interpretação Epistemológica do Processo de Modelagem Matemática: implicações para a matemática. Bolema. Boletim de Educação Matemática (UNESP. Rio Claro. Impresso), v. 26, p. 19-43, 2012.
  14. FERREIRA, M. V. R. P. G.; GRAMANI, L.M.; KAVISKI, E.; BALBO, F. A. N.. Modelagem do Fluxo de Pedestres pela Teoria Macroscópica. Revista Brasileira de Ensino de Física (Impresso), v. 34, p. 4318-4328, 2012.
  15. SILVA, T. C.; GRAMANI, L. M.; KAVISKI, E.; BALBO, F. A. N.; FERREIRA, M. V. R. P. G.. Análise do Tempo de Evacuação Total de um Cinema por meio da Aplicação de Simulações Computacionais. Revista Ingenieria Industrial, v. 1, p. 5-16, 2012.
  16. ORTIZ,C. B-field transformations of Poisson groupoids. Matemática Contemporanea, v. 41, p. 113-148, 2012
  17. Carrer, J. A. M.; Oliveira, M. F. ; VANZUIT, R. J.; MANSUR, W. J.. Transient heat conduction by the boundary element method: D-BEM approaches. International Journal for Numerical Methods in Engineering (Print), v. 89, p. 897-913, 2012.
  18. PEREIRA, W.L.A.; KARAM, V.J.; Carrer, J.A.M. ; Mansur, W.J.. A dynamic formulation for the analysis of thick elastic plates by the boundary element method. Engineering Analysis with Boundary Elements, v. 36, p. 1138-1150, 2012.
  19. Carrer, J.A.M.; PEREIRA, W.L.A.; Mansur, W.J.. Two-dimensional elastodynamics by the time-domain boundary element method: Lagrange interpolation strategy in time integration. Engineering Analysis with Boundary Elements, v. 36, p. 1164-1172, 2012.

 

2011

 

  1. Durán, Carlos Eduardo; Püttmann, T.; Rigas, A.. Suspending the Cartan Embedding of $${{mathbb H}P^n}$$ Through Spindles and Generators of Homotopy Groups. Results in Mathematics / Resultate der Mathematik, v. 60, p. 255-263, 2011.
  2. Sperança, Llohann; A note on the degree of symmetry of exotic spheres. Archiv der Mathematik (Printed ed.), v. 97, p. 495-497, 2011.
  3. Yuan, Jinyun; FAN, Y.; L.P. Wang ; LIMA, H. G. G.; ZHOU, X.. Evaluation of ST preconditioners for saddle point problems. Journal of Computational and Applied Mathematics, v. 236, p. 1543-1551, 2011.
  4. Matioli, Luiz Carlos; Yuan, Jinyun; SOSA, W.. A numerical algorithm for finding solutions of a generalized Nash equilibrium problem. Computational Optimization and Applications, v. 52, p. 281-292, 2011.
  5. Karas, Elizabeth; Ribeiro, Ademir; YUAN, Jinyun; J. Cotrina; SOSA, W. Fenchel-Moreau conjugation for lower semi-continuous functions. Optimization (Print), v. 60, p. 1045-1057, 2011.
  6. Yuan, Jinyu; Liu, X.; McKee, S. ; Y. Yuan. Uniform bounds on the 1-norm of the inverse of lower triangular Toeplitz matrices. Linear Algebra and its Applications, v. 435, p. 1157-1170, 2011.
  7. Alvares, Edson, Assem, I.; Coelho, F.U.; Pena, M.I.; Trepode, S.; From Trisections in module categories to quasi-directed components.Journal of Algebra and its Applications, v. 10, p. 1-25, 2011.
  8. DeLeo, R.; Gramchev, T.; Kirilov, Alexandre Global Solvability in Functional Spaces for Smooth Nonsingular Vector Fields in the Plane. Pseudo-Differential Operators: Analysis, Applications and Computations. Basel: Birkhäuser, v. 213. p. 191-210. 2011.
  9. Sachine, Mael;GOMES-RUGGIERO, M. A. ;  SANTOS, S. A. Solving the dual subproblem of the Method of Moving Asymptotes using a trust-region scheme. Computational & Applied Mathematics, v. 30, p. 151-170, 2011.
  10. Karas, Elizabeth; Ferreira, P. S.; PALUCOSKI, F. L.; Ribeiro, Ademir; Silva, Arinei L.. Aplicação de Programação Inteira na Distribuição de Encargos Didáticos em Instituições de Ensino. TEMA. Tendências em Matemática Aplicada e Computacional, v. 12, p. 135-144, 2011.
  11. Pedroso, Lucas; Diniz-Ehrhardt, M. A.; Martínez, J. M.. Derivative-free methods for nonlinear programming with general lower-level constraints. Computational & Applied Mathematics, v. 30, p. 19-52, 2011.
  12. Kudri, Soraya, Breukmann T., Roika, C.A.. Almost Hurewicz spaces and the almost selectively w*-grouping property. JP Journal of Geometry and Topology, v. 11, p. 19-32, 2011.
  13. Dorini, Fábio Antonio; Cunha, Maria Cristina de Castro; Oliveira, Saulo.Solução de Problemas Envolvendo Equações Diferenciais Sujeitas a Incertezas. TEMA. Tendências em Matemática Aplicada e Computacional, v. 12, p. 111-123, 2011.
  14. Oyarzún, P.; Loureiro, F.S.; Carrer, José; Mansur, W.J.. A time-stepping scheme based on numerical Green's functions for the domain boundary element method: The ExGA-DBEM Newmark approach. Engineering Analysis with Boundary Elements, v. 35, p. 533-542, 2011.
  15. Alves, Marcelo M.S. , Eliezer Batista, Globalization theorems for partial Hopf (co)actions, and some of their applications. Contemporary Mathematics - American Mathematical Society, v.537, p.13 - 30, 2011.
  16. Oliveira, Saulo, G. Seriani. Effect of Element Distortion on the Numerical Dispersion of Spectral Element Methods. Communications in Computational Physics, v. 9, p. 937-958, 2011.
  17. Oyarzún, P.; Loureiro, F.S.; Carrer, José; Mansur, W.J.. A time-stepping scheme based on numerical Green s functions for the domain boundary element method: The ExGA-DBEM Newmark approach. Engineering Analysis with Boundary Elements, v. 35, p. 533-542, 2011.