THE CAUCHY PROBLEM FOR SCHRÖDINGER-TYPE EQUATIONS WITH DATA IN GELFAND-SHILOV SPACE

MARCO CAPPIELLO

Abstract

We consider the initial value problem

(1)
$$\begin{cases} P(t, x, \partial_t, \partial_x) u(t, x) = f(t, x) \\ u(0, x) = u_0(x) \end{cases}, (t, x) \in [0, T] \times \mathbb{R}^n$$

where

(2)
$$P(t, x, \partial_t, \partial_x) = \partial_t - i\Delta_x + \sum_{j=1}^n a_j(t, x)\partial_{x_j} + b(t, x).$$

It is well-known that when the coefficients a_j , b and the Cauchy data f, u_0 are all real valued, smooth and uniformly bounded with respect to x the Cauchy problem (1) is L^2 -well-posed, while if a_j are complex valued suitable decay conditions for $|x| \to \infty$ are needed on the imaginary part of the coefficients in order to obtain either H^{∞} or Gevrey well posedness with a certain loss of derivatives. Here we study how an exponential behavior of the initial data influences the regularity and behavior of the solution for $|x| \to \infty$. In particular, we consider the case when the initial data belong to the Gelfand-Shilov space $\mathcal{S}_s^{\theta}(\mathbb{R}^n)$, (resp. $\Sigma_{\theta}^s(\mathbb{R}^n)$) defined as the space of the smooth functions f satisfying

$$\sup_{x \in \mathbb{R}^n} \sup_{\alpha \in \mathbb{N}^n} C^{-|\alpha|} \alpha!^{-\theta} e^{c|x|^{\frac{1}{s}}} |\partial^{\alpha} f(x)| < \infty,$$

for some (resp. for all) C, c > 0, with $s > 1, \theta > 1$, and prove results of existence and uniqueness of the solution of (1) with precise information both on the regularity and on the behavior of the solution for $|x| \to \infty$. Finally we outline some possible generalizations of these results to a more general class of operators including (2).

UNIVERSITÀ DI TORINO, ITÁLIA
DIPARTIMENTO DI MATEMATICA "GIUSEPPE PEANO"

Email address: marco.cappiello@unito.it